
More on Hashing:
Collisions

See Chapter 20 of the text.

Collisions
Let's do an example -- add some people to a hash table
of size 7.

Name h = hash(name) h%7

Ben 66667 6

Bob 66965 3

Steven -1808493797 -5 -> 2

Cynthia -1392489180 -5 -> 2

Alexa 63347171 6

Jackie -2083773093 -3 -> 4

The first three are simple:

Steven Bob Ben

0 1 2 3 4 5 6

Steven Bob Ben

0 1 2 3 4 5 6

Where do we now add Cynthia, who hashes to index 2?
One answer is to move over until we find a free spot in the
table. Indices 2 and 3 are occupied but 4 is not, so we
insert Cynthia there:

Steven Bob Cynthia Ben

0 1 2 3 4 5 6

We call such a situation, where we want to add an item
to a hashtable at a location that is already occupied, a
"collision". One sure way to get a collision is to have
two object have the same hash values.

If we add Alexa, who also hashes to 6, to the table, we
see she collides with Ben. There is no room to the right
of Ben, so we wrap around and put Alexa at position 0:

Steven Bob Cynthia Ben

0 1 2 3 4 5 6

Alexa Steven Bob Cynthia Ben

0 1 2 3 4 5 6

Now suppose we want to add Jackie to the table. She
hashes to 4, so she collides with Cynthia. Note that this
is a new kind of collision. No one else in the table has
the same hash value as Jackie, but she collides because
Cynthia was moved away from the index she hashed to.

We resolve this collision in the same way as before and
put Jackie at index 5.

Alexa Steven Bob Cynthia Jackie Ben

0 1 2 3 4 5 6

Now suppose we want to determine if Cynthia is in the
table. She hashes to 2, which is occupied by someone
else. But of course she could have collided with the
person at index 2 (as she did) so we look to the right.
She isn't at index 3, but she is at index 4. We can find
items in the table even if they have moved because of a
collision.

Alexa Steven Bob Cynthia Jackie Ben

0 1 2 3 4 5 6

Now let's see if Chris is in the table. He hashes to index
3. Slots 3, 4, 5, and 6 are all occupied with someone
other than Chris. We can't move to the right from index
6, so we wrap around to index 0. That slot is also
occupied, but the next slot, at index 1, is not. If Chris
was in the table he would have been at index 1, if not in
one of the slots we examined earlier, so we can be
certain that he is not in the table

Alexa Steven Bob Cynthia Jackie Ben

0 1 2 3 4 5 6

Consider what would happen if we removed Bob from
the table. If we then searched for Cynthia, who hashes
to 2, we would see that slot 2 is filled with someone else,
but slot 3 was vacant. We would erroneously conclude
that Cynthia was not in the table. Rather than actually
removing Bob, we need to either replace it with a token
"something used to be here" marker or else set a flag in
the Bob entry that says it has been removed.

Question 1: I want to put strings “A”, “B”, etc. into
a HashTable of size 7 (so with indexes 0 through
6). Here are their hash values:

Letter A B C D E
Hash Value 4 3 3 5 6

We add the letters to the table in alphabetical
order. Find the index where each letter is stored
after the collisions are resolved.

Answer 1:

E B A C D

0 1 2 3 4 5 6

Letter A B C D E
Hash Value 4 3 3 5 6

Question 2, again with table of size 7 (indexed 0 through 6)

Item hashValue

one 0

two 6

three 6

four 0

If we add the string in the order “one”, “two”, “three”,
“four”, at what index does "four" end up?

Answer 2: At index 2.

Question 3. We want to make a map where the keys
are strings: letters “A”, “B”, and so forth, and the
values are integers. Here are the key-value pairs:

Letter A B C D E
Value 23 14 3117 42

Letter A B C D E
Hash Value 4 3 3 5 6

We will use the same hash values as before:

Again, we insert the data in alphabetical order of
the keys. Draw a picture of the HashTable.

Letter A B C D E
Hash Value 4 3 3 5 6

Answer 3:

E 42 B 14 A 23 C 31 D 17
0 1 2 3 4 5 6

Question 4: Class HashMap<K, V> has a method
V get(K k)

that returns the value associated with key k, or null
if k is not a key. Given these hash values:

Letter A B C D E
Hash Value 4 3 3 5 6

and this HashMap<String, Integer>:

E 42 B 14 A 23 C 31 D 17
0 1 2 3 4 5 6

What will get(“D”) return?

Answer 4: 17

Question 5: Suppose we have these hash values

Letter A B C D E
Hash Value 4 3 3 5 6

and this HashMap<String, Integer>:

E 42 B 14 C 31 D 17
0 1 2 3 4 5 6

what is the value of get(“C”) ?

Answer 5: null

We start at index 3, the hash value of “C”. That is
occupied with a key that is not “C”, so we go to the
next entry, at index 4. That is not occupied, so we
think that “C” is not a key in the map and return
null. We never get to the pairing of “C” with 31 at
index 5.

Note that problems like this can result from
deleting entries from a HashMap.

